
Enantioselective Preparation of
4-Substituted Cyclohexenes by Radical
Fragmentation of Sulfoxides†

Christoph Imboden, Félix Villar, and Philippe Renaud*
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ABSTRACT

Radical fragmentation of o-bromophenyl sulfoxides is reported. Starting from enantiomerically pure material, 4-substituted cyclohexene derivatives
have been prepared with enantiomeric excesses between 70% and 86%. The key step of the process is a diastereoselective abstraction of a
hydrogen atom by the initial aryl radical. The highest enantiomeric exesses have been obtained in the presence of aluminum Lewis acids.

Recently, radical reactions have been applied to the prepara-
tion of enantiomerically enriched material.1 All of the
reported reactions were based on diastereoselective (chiral
auxiliary control) or enantioselective (catalyst or reagent
control) formation of carbon-carbon and carbon-hydrogen
bonds.2 No process involving bond breaking has been
reported. In this Letter, we report the first example of this
type: a radical fragmentation reaction of sulfoxides leading
to highly enantiomerically enriched material has been
designed. The key step of the process is a diastereoselective
hydrogen atom abstraction.

The thermal syn elimination of sulfoxides is a well-known
reaction occurring at temperatures higher than 200°C when
nonstabilized alkenes are formed.3 This reaction has been
applied in a pioneer work of Goldberg for the preparation
of 4-substituted cyclohexene.4 We were very interested in
finding a mild alternative to this process. Our intention was

to develop an enantioselective elimination procedure of H-X
from 4-alkylcyclohexyl halides via a radical process. The
strategy is depicted in Scheme 1 and is based on the
conversion of the halideA into a sulfoxide followed by
generation of ano-aryl radical B which undergoes 1,5-
hydrogen atom translocation. The 2-sulfinylated radicalC
fragments extremely rapidly to the desired alkeneD.5 The
fragmentation of a 2-phenylsulfinylated radical of typeC is
a fast and well documented process whose rate is ap-
proximately 10 times faster than the radical elimination of a
bromine atom and only two times slower than the elimination
of an iodine atom.6-8 The stereoselectivity control of the
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whole process should take place in the hydrogen atom
abstraction step.9

To test the feasibility of the translocation-elimination
cascade, theo-bromosulfoxide1a was prepared in racemic
form from 2-bromothiophenol by alkylation with the corre-
sponding bromide followed by oxidation withm-CPBA
(Scheme 2). The cis/trans mixture of isomers of1a was
treated with tin hydride AIBN in refluxing benzene to give
4-phenylcyclohexene2a in excellent yield.

The enantiomerically pure sulfoxides1a and 1b were
prepared from the diastereomerically pure menthyl (S)-2-
bromophenylsulfinate3 (eq 1).10 The cis and trans isomers
were separated by flash chromatograhy. To isolate satisfac-
tory quantities of the minor cis isomer, epimerization of the
R-center was achieved by deprotonation oftrans-1a with
LDA followed by protonation with 2,6-di-tert-butyl-4-
methylphenol. This procedure afforded1a as a cis/trans 2:1
mixture of diastereomers. After flash chromatography, di-
astereomerically purecis-1a (52%) andtrans-1a (25%) were
isolated. A nonoptimized isomerization procedure was used
with trans-1b using water instead of 2,6-di-tert-butyl-4-
methylphenol for the protonation step. It afforded1b as a
cis/trans 1:1 mixture in 80% yield. Separation of the

diastereomers was also possible by flash chromatography.
The optical purity (>99% ee) of the four sulfoxidestrans-
1a, cis-1a, trans-1b, andcis-1b was determined by HPLC
on a chiral column (Daicel, Chiralcel OB-H).

The cis and trans isomers of1a and 1b were submitted
separately to classical radical tin hydride reduction conditions
according to eq 2 (slow addition of Bu3SnH over 12 h, AIBN,
300 W sun lamp, 10°C); results are shown in Table 1, entries
1-4.

The expected 4-substituted cyclohexenes2a and2b were
isolated in 65-75% yields. Starting from the trans isomer,
the cyclohexenes2a and2b were nearly racemic. However,
cis-1aandcis-1b gave2aand2b with ee’s of 70% and 80%,
respectively. The absolute configuration the major isomer
of 2b was deduced from the comparison of the optical
rotatory power with the one reported in the literature for (R)-
2b.11 The absolute configuration of2a was assigned by
analogy to the case to2b. A model for the transition state
of the reaction withcis-1b supported by ab initio calculations
(UHF 6-31G*) is reported in Figure 1. The cyclohexane ring
lies in a chair conformation, and the sulfinyl group occupies
an axial position. The distance between the Car(‚) and the
abstracted hydrogen atom was set at 1.4 Å. The preferred
transition stateE (∆∆Hf ) 0 kcal/mol) minimizes the steric
interactions between the oxygen atom of the sulfoxide and
the cyclohexyl group. The minor transition stateF (∆∆Hf

) +2.0 kcal/mol) is destabilized by interaction of the oxygen
atom with the cyclohexyl ring.
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Fensterbank, L.; Malacria, M.Tetrahedron Lett.1999,40, 3565-3568.

(8) For an application in asymmetric synthesis, see: (a) Malacria, M.;
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Scheme 2

Table 1. Radical Mediated Fragmentation of Sulfoxides1a and
1b According to eq 2

sulfoxide Lewis acid product yield [%] ee [%]

1 trans-1a none 2a 75 0
2 cis-1a none 2a 65 70 (R)
3 trans-1b none 2b 70 0
4 cis-1b none 2b 70 80 (R)
5 cis-1a MADa 2a 60 76 (R)
6 cis-1a MADPPb 2a 65 84 (R)
7 cis-1a MADPc 2a 57 86 (R)

a MAD ) methylaluminum di(2,6-di-tert-butyl-4-methylphenoxide).
b MADPP) methylaluminum di(2,6-diphenylphenoxide).c MADP ) meth-
ylaluminum diphenoxide.
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According to the modelsE and F, complexation of the
oxygen atom of the sulfinyl group by a Lewis acid should
destabilizeF relative to G due to an increase of steric
interactions between the complexed oxygen atom and the
cyclohexyl ring.12 This hypothesis was confirmed by our
experiments with methylaluminum di(aryloxide) derivatives

(Table 1, entries 5-7). In the presence of methylaluminum
di(2,6-di-tert-butyl-4-methylphenoxide) () MAD),13 the
selectivity went slightly up (entry 5, 76% ee) relative to the
reaction in the absence of Lewis acid (entry 2, 70% ee).
Better results were obtained with less bulky Lewis acid such
as methylaluminum di(2,6-diphenylphenoxide) and methyl-
aluminum diphenoxide (entries 6 and 7, 84% and 86% ee)
indicating that presumably only partial complexation was
taking place with the sterically highly hindered MAD.

For comparison purposes, the thermal elimination of the
sulfoxidecis-1aandtrans-1awas examined (eq 3). The cis
isomer fragmented at 200°C and gave (S)-2ain 64% yield
and moderate enantioselectivity (54% ee). The trans isomer
gave (R)-2ain 57% yield and 44% ee.

In conclusion, we have presented here a new way for the
elimination of sulfoxides under extremely mild conditions.
This reaction is expected to find applications for regio-,
diastereo-, and enantioselective preparation of alkenes. For
instance, we have shown that by using enantiomerically pure
4-substituted cyclohexyl sulfoxides, it is possible to prepare
enantiomerically enriched 4-substituted cyclohexenes. Further
applications to other classes of chiral alkenes such as
tropidine alkaloids are currently being investigated in our
laboratory.
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Figure 1. Calculated transitions states (ab initio UHF 6-31g*)E
andF leading to (R)-2b(major) and (R)-2b(minor), respectively.
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